skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zink, Adrian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We recently reported on the radio-frequency attenuation length of cold polar ice at Summit Station, Greenland, based on bistatic radar measurements of radio-frequency bedrock echo strengths taken during the summer of 2021. Those data also include echoes attributed to stratified impurities or dielectric discontinuities within the ice sheet (layers), which allow studies of a) estimation of the relative contribution of coherent (discrete layers, e.g.) vs. incoherent (bulk volumetric, e.g.) scattering, b) the magnitude of internal layer reflection coefficients, c) limits on the azimuthal asymmetry of reflections (birefringence), and d) limits on signal dispersion in-ice over a bandwidth of ~100 MHz. We find that i) after averaging 10000 echo triggers, reflected signal observable over the thermal floor (to depths of approximately 1500 m) are consistent with being entirely coherent, ii) internal layer reflection coefficients are measured at approximately -60 to -70 dB, iii) birefringent effects for vertically propagating signals are smaller by an order of magnitude relative to comparable studies performed at South Pole, and iv) within our experimental limits, glacial ice is non-dispersive over the frequency band relevant for neutrino detection experiments. 
    more » « less
  2. null (Ed.)
  3. Hallibert, Pascal; Hull, Tony B.; Kim, Daewook; Keller, Fanny (Ed.)
    The Cherenkov Telescope Array (CTA) is the next-generation ground-based observatory for very-high-energy gamma rays. One candidate design for CTA's medium-sized telescopes consists of the Schwarzschild-Couder Telescope (SCT), featuring innovative dual-mirror optics. The SCT project has built and is currently operating a 9.7-m prototype SCT (pSCT) at the Fred Lawrence Whipple Observatory (FLWO); such optical design enables the use of a compact camera with state-of-the art silicon photomultiplier detectors. A partially-equipped camera has recently successfully detected the Crab Nebula with a statistical significance of 8.6 standard deviations. A funded upgrade of the pSCT focal plane sensors and electronics is currently ongoing, which will bring the total number of channels from 1600 to 11328 and the telescope field of view from about 2.7° to 8° . In this work, we will describe the technical and scientific performance of the pSCT. 
    more » « less